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Borders of disorder: in turbulent channel flow
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A quantitative theory of the average features of turbulent flow in a channel is
described without the introduction of empirical parameters. The qualitative problem
consists of maximizing the dissipation rate of the mean flow subject to the Rayleigh
condition that the mean flow has no inflections. The quantitative features result from a
boundary stability study which determines a smallest scale of motion in the transport
of momentum. The velocity fields satisfying these conditions, the averaged equations
and the boundary conditions uniquely determine an entire mean velocity profile at
all Reynolds numbers within ten per cent of the data. The maximizing condition
for the reproducibility of averages emerges from the Navier–Stokes equations as a
consequence of a novel definition of nonlinear instability. The smallest scale of motion
results from a theory for a time-dependent re-stabilization of the boundary layer
following a disruptive instability. Computer reassessment of the several asymptotic
estimates of the critical boundary eigenstructure can establish the limits of validity of
the quantitative results.

1. Introduction
The non-periodic fluid motion called turbulence has attracted practical and

theoretical attention for centuries. Distinct branches of this study include the average
of flows in pipes and channels resulting from imposed pressure or flux, and separately
the mixing resulting from mechanical stirring. This work addresses the phenomena
in pipes and channels, both because of its practical importance and the many careful
measurements of such flows. Although the observed flows are ever changing, for fixed
forcing, the averages are remarkably reproducible (i.e. ‘statistically stable’). Figure 1
shows mean profiles of velocity from recent measurements of pipe flow, by Zagarola,
Perry & Smits (1997), over a large range of Reynolds numbers ≡ R (the imposed
quantity determining the flow). The logarithmic scale of the abscissa emphasizes the
boundary region. The maximum of each profile marks the centre of that flow. The
observation of profile slope, unchanging as R is increased, has been the subject of
various theories for many years. This paper contains a quantitative theory for such
profiles across the entire flow and for all R.

The central mathematical problem addressed here has only three elements. These
are to find the maximum value of the dissipation rate of the mean flow as a function
of R, subject to the condition that the mean flow has no inflections and that a spectral
representation of the macroscopic momentum transport is limited by a smallest scale
of motion.

It will be shown here in what sense this qualitative problem was explored previously
by Malkus & Smith (1989, hereinafter referred to as MS). Earlier work anticipated
aspects of the structure of the mean flow (Malkus 1979) and aspects of the nonlinear
condition for reproducibility of an average (Malkus 1996a).
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Figure 1. Plot of the observed velocity profiles in a pipe normalized using scaled variables,
U for the velocity and z+ for distance from the boundary (Zagarola et al. 1997).

In § 2, the Navier–Stokes equations and first integrals appropriate for incompressible
channel flow are exhibited.

In § 3, of this paper the determination of a sufficient condition for instability of
solutions of the Navier–Stokes equations is sought. A resolution of this problem is
based on an unusual criterion for initial instability which leads to the conclusion that,
among the solutions at a given R, only those with maximum dissipation rate of their
mean flows can lead to reproducibility of their averages. This result is the first of the
three premises of the formal problem, whose speculative origin is to be explored by
comparison with the observations.

In § 4, the primary quantitative restriction is found in the investigation of a
boundary-layer process which determines both the smallest scale of motion active
in the momentum transfer process and a viscous spectral tail. This work is a
generalization of papers by Howard (1964), and Malkus (1963, 2001) and determines
the instability of a boundary layer re-establishing itself viscously after a violent
disruption. A first step in this time-dependent problem leads to the classic Orr–
Sommerfeld equation. Taylor (1923) was among the first to find and exhibit an
instability of this equation (which is a two-dimensional vorticity equation central to
this study). Before Taylor’s quantitative study, Rayleigh (1880) deduced that steady
parallel inviscid shear flow was unstable if the variation of the flow with position had
an inflection. Raleigh’s theoretical finding and its generalization to finite amplitude
by Arnol’d (1965) is the basis for the second of the three premises of the formal
problem. That there is a smallest scale of motion in the momentum transfer is the
third premise.
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Figure 2. Recent experimental data for channel flow, and theoretical profiles for different
values Rc of the boundary critical eigenvalue estimated in § 4. For each curve, R � 25 600;
data . . . , Johanssen & Alfredsson (1983); theory ——, Rc = 420; − − −, Rc = 480.

In § 5, these quite different ‘stability’ conditions are shown to lead to a problem
addressed at length in the empirical study (MS). Figure 2 from that study, using the
quantitative results from § 4, is an example at a given R comparing the theory and
data (but without the viscous tail which can smooth the transition from viscous to
inertial regions). The inertial region exhibits a logarithmic slope that extends further
into the flow at higher Reynolds number. The slope has a constant value as R is
increased and the outer flow exhibits a velocity defect ‘law’.

The number of contributions to the observation and interpretation of pipe and
channel flow fill book after book. Relevant references to this vast work will be made
here, for example the quantitative study of Goldshtik, Zametalin & Shtern (1982)
explores the transition from the viscous profile near the boundary to the start of
the logarithmic region just beyond, employing three assumptions drawn from the
observations. Yet in the last hundred years there has been no deductive study free
of empiricism which generates quantitative results for turbulent averages across the
entire channel.

However, a formal determination of limits on turbulent flow has produced the ‘upper
bound’ theory which was first successfully addressed by Howard (1963) then by Busse
(1969), and recently by Doering & Constantin (1994), Nicodemus, Grossmann &
Holthaus (1999) and Kerswell (1998) among others. Bounds on the total dissipation
rate are determined, constrained by the power integrals, the boundary conditions, the
mean momentum balance and the continuity condition. These formal bounds lead to
plausible scaling laws for momentum transport. Yet an unrealistic aspect of all these
bounds is their velocity fields, which if they actually occurred would be unstable.
Kerswell (2002), using the same constraints, has been able to extend these studies
to bounds on many other dissipation rate functionals. One of the functionals, the
dissipation rate of the mean velocity (the functional studied here) does not have an
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unstable field. However, not one of the upper bound fields with the constraints listed
above exhibit the logarithmic or velocity defect regions characteristic of the observed
flows. All these limits are an order of magnitude larger than the observations. From
the study to follow, it is anticipated that vorticity stability conditions imposed as
additional constraints can bring these formal upper bound results much closer to the
observations.

2. The Navier–Stokes equations and their first integrals
The equations for incompressible shearing flow in a channel are written(

∂

∂t
+ u · ∇

)
u + ∇P = ν∇2u ∇ · u = 0, (1)

where u = U (z)î + v, and v = uî + v ĵ + wk̂ is of zero average, ν ≡ µ/ρ, is the
kinematic viscosity, 〈∂P/∂x〉 and ρ are constants. The equations depend on the single
parameter, the Reynolds number R = 〈u〉d/ν, based on the z average of U (z) ≡ 〈u〉
and the channel half-width d . The brackets 〈〉 mean an average over the entire fluid.
When scaled by d , the cross-space is z, −1 � z � +1.

The custom in much of the fluid dynamic literature is to scale equation (1) based
on the boundary stress. Then for the steady averaged flow, the first integral of (1) is
written

m + R−1
τ β = z, (2)

which states that the average stress varies as z across the channel, where the ‘Reynolds
stress’ m ≡ uw (the overbar indicates an average at fixed z), β ≡ −∂U/∂z, Rτ = Uτd/ν,
Uτ ≡

√
τ (−1)/ρ called the ‘friction velocity’, τ (−1) is the stress at the boundary, also

z+ ≡ (1+ z)Rτ . Here and hereinafter all velocities are scaled with Uτ . Note that either
R defined after (1) or Rτ defined after (2) can be fixed in an experiment. Then, the
unfixed parameter is determined by the resulting flow. In this average steady state,
integration of

〈βz〉 =RR−1
τ and from (2), 〈mz〉 +RR−2

τ = 1
3
, (3)

also from (2), the total dissipation rate, D = τ (−1)〈u〉Uτ , is proportional to

RR2
τ = R2

τ (〈β2〉 + Rτ 〈βm〉) = R2
τ (〈β2〉(1 + I )), (4)

where the non-dimensional

I =
Rτ 〈βm〉

〈β2〉 =
Df

Dm

. (5)

Dm is the dissipation rate due to the mean flow and Df is the dissipation rate due to
the fluctuations. Also from (4),

I =
R

〈β2〉 − 1. (6)

3. Proposed criteria for the instability and reproducibility of fully
developed flow

An application of a formalism proposed in Malkus (1996b) is to determine a
sufficient condition for the instability of a solution in fully developed steady-state
channel flow. A disturbance equation, not linearized, for some solution v0, U0(z), P0
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from (1) is written for v′ and p′,

∂v′/∂t = −∇p′ + R−1
τ0

∇2v′ − w′(∂U0/∂z)î + v′ · ∇v0 + v0 · ∇v′ + v′ · ∇v′ (7)

where 〈v′〉 = 0. The instability of a fully developed flow is established by any example
of a disturbance for which the mean squared value of the resulting fluctuating fields
grows with time. If growth occurs in an arbitrarily chosen first instant, t0, for all
possible phases and amplitude of the disturbance field, it is proposed that this is
a sufficient condition to assure instability. The condition for growth of the mean
squared value of (v0 + v′) is that

∂

∂t
(〈2v0 · v′〉 + 〈v′2〉) > 0. (8)

This condition also must be met by that subset of disturbances of arbitrary amplitude,
which over the entire horizontal domain are not correlated with v0 at t = t0 (e.g.
other turbulent flows and periodic cellular solutions). For these selected disturbances,
〈v0 · v′〉 vanishes from the condition for instability (8), as does 〈v′ · v′ · ∇v0〉 from
〈v′ · (7)〉 at t = t0. Using the average integral of v′ · (7), then (8) is written fully as

∂〈v′2〉
∂t

=
〈
R−1

τ 0
v′ · ∇2v′〉 + 〈m′β0〉 > 0. (9)

This test of the instability of the solution v0, U0, P0, is to be made with disturbances v′,
which have the form (but arbitrary amplitude) of another solution (typically unstable).
If then m′ is proportional to a solution m1, from equation (2), m1 + R−1

τ1
β1 = z. Also

from the basic equations and (2), the average fluctuation dissipation rate term is

−R−1
τ1

〈v1 · ∇2v1〉 = 〈m1β1〉 = 〈zβ1〉 − R−1
τ1

〈
β2

1

〉
. (10)

Since the disturbance amplitude of v′ appears quadratically in (9) and v′ is defined
as proportional to v1, using (10), (9) may be rewritten

∂〈v′2〉
∂t

= c
[
R0 − R1 +

〈
β2

1

〉
− Rτ0

R−1
τ1

〈β1β0〉
]

� 0, (11)

where c is an arbitrary positive constant. If then R is fixed, Schwartz’s inequality
establishes that a sufficient condition for instability of v0, U0, P0 is that

R2
τ0

〈
β2

0

〉
< R2

τ1

〈
β2

1

〉
. (12)

The literature (e.g. Salmon 1988; Friedlander & Vishik 1992), contains many studies
of sufficient conditions for the instability of steady non-viscous flows. In contrast, the
average condition, equation (12), is for non-steady or steady flow and is derived for
viscous flows (the average dissipation rate of a mean flow or entropy production rate
of a mean flow in the Boussinesq sense).

Given the conclusion, equation (12), a necessary condition for reproducibility of
averages for fixed R is that the subset of solutions for which R2

τ 〈β2〉 is (very close to
its) maximum will be selected.

To continue with this study, this novel condition may be taken as a premise, whose
consequences will be explored in the following pages.

A first implication of maximum R2
τ 〈β2〉, for fixed R = Rτ 〈βz〉 from (3), can be investi-

gated by seeking the maximum of the homogeneous functional

R2
τ 〈β2〉
R2

=
R2

τ 〈β2〉
R2

τ 〈βz〉2
≡ B =

〈β2〉
〈βz〉2

. (13)
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Using the Schwartz inequality, B is seen to have a minimum value of 3, but has no
maximum without additional constraints on β . It is anticipated that as R increases, β

will become larger in the boundary regions. The constraint of a smallest spatial scale, ≡
δν , for β at a given R and the Rayleigh requirement that ∂β/∂z be of one sign for
stability, are the topics of the next section. With these constraints, B maximum is
achieved when 〈βz〉2 = R2

τ0(δ2
ν ), while the value reachable by 〈β2〉 is R2

τ0(δν), recalling
from equation (2) that the value of β2 at the boundaries is R2

τ and that β is scaled by
Uτ . Hence, 〈β2〉 approaches a minimum value to maximize B . Then, from equation (6)
the non-dimensional ratio I will be a maximum for the stable solutions. That the
R2

τ resulting from a minimum 〈β2〉 would lead to qualitatively plausible results for
channel flow was ‘discovered’ in the empirical study (MS). The functional with that
maximal property was labelled there an ‘efficiency function’, but with no knowledge
of its origin. It will be reassessed here using the quantitative results reported on in
the following section. The set of velocity fields from which an extreme will be selected
is still to be determined.

4. A quantitative theory for the boundary layer in fully turbulent shear flow
Often called the ‘laminar sublayer’, this boundary flow is seen as the central

amplitude-determining process in turbulent channel flow. An unusual view of con-
vective instability due to Howard (1964) was applied to turbulent shear flow in
Malkus (2001). Howard pictured the convective instability as sweeping away a large
part of the thermal boundary layer, which would then ‘heal’ diffusively until once
again unstable. The critical condition for instability was not computed, but assumed
to be similar to that found on a time-independent thermal profile not influenced by
any large-scale velocity fields. (Supported in a parallel quantitative study, Malkus
1963). Both assumptions appear sound for convection at Rayleigh numbers that are
not too high, but are not appropriate at high Rayleigh number and for turbulent
shear flow. In shear flow, the instability is quite sensitive to the time-changing shape
of the mean flow profile, e.g. in the re-establishment of flow in channels just above
the critical Reynolds number (Malkus 2002).

Here, also, the quantitative boundary Reynolds number is sought for initial
instability of the diffusively healing layer. Such an estimate was made in Malkus
(2001), yet a more detailed analysis of the unstable field of motion is required in
order to determine the position of the transition from viscous to inertial behaviour.
A complete study of this transient regrowth and instability will require an extensive
computer exploration. Here, an idealization of this process will be analysed using
several of the methods of estimation developed over the years for such boundary-
layer problems.

The plausible development of the ‘healing’ diffusive layer is the studied and restudied
Blasius-layer instability. An important process, akin to the first instability of flow over
an aircraft wing, Blasius flow has been explored in many experiments as well as in
theory. Although it is an instability on a growing mean flow profile, it has been treated
successfully as an instability on a time-independent flow with corrections made for
the non-parallel change in the profile. This basic Blasius self-similar profile, seen in
figure 3, is derived and plotted in Schlichting (1960). The critical Reynolds number
(R = δV/ν, where δ is the ‘displacement thickness’ of the boundary layer, V the ‘outer’
velocity at 3δ and ν the kinematic viscosity) Rcritical ≡ Rc is found by W. Tollmein (1929)
as Rc =420, by C. C. Lin (1945) as Rc = 421 by R. Jordinson (1970) as Rc = 520, all
reported at length in Drazin & Reid (1981). The curves of marginal stability for both
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Figure 3. Scaled Blasius velocity distribution in the laminar layer as measured by
Nikaradse, replotted in Schlichting (1960).

parallel and non-parallel flow are compared with experimental data in figure 4. The
critical values reported seemed insensitive to ‘noise’ in the input flow, supporting the
belief that the instabilities observed were supercritical. It may be fortuitous that both
data and theory recapture the earliest uncorrected results.

The theory for this instability emerges from the Orr–Sommerfeld linear two-
dimensional vorticity equation, written

(iαR)−1(D2 − α2)2φ = (U − c)(D2 − α2)φ − U ′′φ, (14)

with boundary conditions

αφ = Dφ = 0 at z = −1, z = +1,

where

ψ ′ = φ(z) eiα(x−ct) (15)

is a streamfunction and ∇2ψ ′ is the y-component of the vorticity. To determine the
critical eigenstructure, U in equation (14) initially is taken to be a time-independent
flow, as in the Blasius study. A first consequence of this stability equation is Rayleigh’s
deduction that, at high R, instability can occur if U ′′ changes sign. In consequence
of the presumed spasmodic nature of the stabilizing processes, not only near the
boundary but throughout the fluid, it is proposed that overall stability can only be
assured if U ′′ is of one sign for the entire channel. However, at lower R, equation (14),
which is of fourth order, has two ‘outer’ primarily inertial solutions and two ‘inner’
solutions which decay exponentially away from the boundary. The separation ratio of
the critical point where U = c, which is at 0.725δ for c = 0.40 in Blasius flow, and the
inner layer, which determines the transition from partially inertial to purely viscous
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Figure 4. Curves of marginal stability for the Blasius boundary layer based on parallel and
non-parallel stability theory and experimental data, from Drazin & Reid (1981).

behaviour is estimated in Drazin & Reid (1981) (pp. 166–172) as[
(αR)1/3 + (αR)1/5

]/
2(αR)1/2 � 0.307 (16)

for Rc = 420 and α � 0.30, where for the ‘healing’ channel flow, U ′′(−1) is not zero.
With a smallest scale of motion in the inertial process to be determined using

equation (16) (followed by an exponential viscous ‘tail’) and the requirement that U ′′

be one sign for stability, a maximization of the I in equation (6) can be implemented.
Presumably the minimization of 〈β2〉 and the following determination of R2

τ , subject to
these few constraints, will bound the realized flow from above. The comparison of the
observed flow and the constrained optimization will then determine the importance
(Virk 1975; Malkus 1979) or lack thereof, for additional constraints. The following
section rephrases the central features of the earlier exploration (MS) which included
the optimization of I and determination of R2

τ at fixed R, here using the derived
eigenvalue Rc and the Blasius based estimate for the relation between Rτ and the
smallest scale of motion.

5. An optimum channel flow
The constraint that in this flow U ′′ be of one sign is implemented with a Fejér

representation

−U ′′ ≡ F ∗F, F ≡
∞∑
0

Fk eikφ, (17)
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where φ ≡ (1 + z)π and F ∗ indicates the complex conjugate. Results with another
representation, using product Chebyshev series due to Worthing (1990), will also be
discussed. The boundary conditions, v = 0, and ∇ · v = 0, require that

U ′′′ = U = 0, U ′′ = Rτ , U ′ = ±Rτ at z = ∓1. (18)

The two constraints on the series F that follow from (18) are

∞∑
0

Fk = R1/2
τ ,

∞∑
0

F 2
k = Rτ . (19)

An average over the second integral of U ′′ in (17) leads to

R = 1
2
R2

τ − Rτ

∞∑
0

∞∑
0

k �=j

FkFj

π2(k − j )2
. (20)

Lastly, that position in the boundary layer where the inertial behaviour ceases and
the exponential viscous tail begins, defines a largest wavenumber, ≡ kν , effective
in momentum transport. From the estimate, equation (16), and the distance of the
Blasius critical layer from the boundary 0.725δ, that smallest scale can be written
δν = (0.307 × 0.725)δ, recalling that δ was defined as the ‘displacement thickness’ of
the boundary layer which determined the critical Rc (= 420 for the Blasius profile).
In the viscous boundary, a local Reynolds number can be defined as R(s) = V s/ν,
where V and s are the unscaled average velocity and distance from the boundary. The
scaled quantities in that region are U = V/Uτ = z+, z+ = (1+z)Rτ , and (1+z) = s/d ,
then

R(s) = z+2, (1 + z) = R−1
τ R(s)1/2. (21)

The smallest scale of motion δν determines a full wavelength of largest wavenumber
kν = 2d/δν in the Fejér series, (17). Therefore, from (21),

kν =
2Rτ

[R(δν)]1/2
=

2Rτ

(0.307 × 0.725Rc)1/2
= 0.207Rτ (22)

for Rc = 420.

Hence, the infinite series in equations (17)–(20) can be truncated at kν , if it is
presumed that the summable exponential tail has a small effect which can be added
later on. (Such a summation is made in the 1979 paper.)

To maximize I of equation (6), the minimum value of 〈β2〉 as a function of R

is to be found. The earlier paper (MS) contains both the structure of 〈β2〉 and the
Lagrangian for minimum 〈β2〉 subject to the boundary conditions, a smallest scale kν

and the Reynolds number given by equation (20). Briefly outlining that work,

〈β2〉 = R +
1

π2

kν∑
0

kν∑
0

kν∑
0

kν∑
0

k �=j

FkFjFmFn

(k − j )2
δk−j,m−n − 2

3
R2

τ , (23)

where δk−j,n−m is the Kronecker-delta function. The Lagrangian for minimum 〈β2〉,
subject to the constraints equations (19), (20) and (22) lead to a set of [kν + 4]
equations for Fk : k = 0, kν and λ1, λ2, λ3, which are

(λ3 − 1)

2π2
R1/2

c kν

kν∑
0

k �=j

Fj

(k − j )2
+ λ1 + 2λ2Fk +

4

π2

kν∑
0

kν∑
0

kν∑
0

k �=j

FjFmFn

(k − j )2
δk−j,n−m = 0, (24)
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Figure 6. Maximum velocity defect profiles for the six curves of figure 5. The exact
superposition suggests the title ‘law’.

and was solved using Newton’s method. With these solutions for Fk(kν), the value of
R2

τ is found from equations (22) and (20) for a given Reynolds’ number. As a function
of Reynolds number, the mean flow for this optimization is shown in figures 5, 6
and 7, reproduced from MS, but with the numerical results found here. An earlier
study, Malkus (1979), anticipated qualitative consequences of an Fk spectrum such as
figure 7. There, the ‘smoothness’ of a spectrum, with the exception of F0 and F1 as
in figure 7(b), permits the determination of U (ϕ) for ϕ 
 k−1

ν as

UMAX − U =
1

π2

[
F 2

1 ln cosec
ϕ

2
+ 1

2
F0(F0 − F1)(π − ϕ)2

]
+ 0

(
F2

kν

)
, (25)
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Figure 7. (a) Maximum Fk spectrum for kν = 144. (b) Close-up of the spectrum
‘boundary layer’.

which is equation (5.2) in Malkus (1979). It is seen that the unsmooth initial terms in
Fk determine the internal flow. In MS, the R dependence of F0 and F1 for minimum
〈β2〉 vanished with increasing R. This is shown in figures 5 and 6, which are integrals
for U (ϕ) computed from the optimum Fk spectrum. The intercept of the smooth Fk

spectrum as k approaches zero, determines the logarithmic slope, remaining constant
only if that intercept is independent of R, as in figure 5. The velocity defect ‘law’
results from the R independence of the low k values of Fk , as exhibited in figure 6.
All other moments of β , m and their products can be determined from the Fk(R) and
equation (2) (e.g. the average fluctuation dissipation rate as a function of position
and R).
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Figure 2 compares theoretical curves for Rc = 420 and 480 with data at R = 25 600.

For Reynolds numbers greater than 50 000, the computer time required to determine
the optimum spectrum became excessive. Encouraged by Professor Ierley at Michigan
Technical University, Worthing (1990) repeated the qualitative aspects of the problem
in MS, but used a Chebyshev series permitting both a check on the work in MS and
results at much larger R. Perhaps his approach will be repeated with a reassessment
of the quantitative determinations reported in this paper.

The exploratory qualitative study in MS included a search of consequences of
maximizing integrals other than I of equation (6). None were found that even
approached the observed flow. In contrast to the maximum of the dissipation rate of
the mean, the maximum of the total dissipation rate, equation (4), was determined
in MS from an Euler–Lagrange equation which was linear in Fk , hence more easily
solved. The Fk for k near zero for this case approached zero as R increased, leading
to a velocity profile flat in the interior with an abrupt boundary transition.

The necessary condition for reproducibility found here appears to be closely
approached in channel flow without additional constraints. It is probable that this is
due to a dense occupancy of unstable solutions in the phase space and may not occur
near some initial instabilities. A first qualitative formulation of this condition for
flows where there is a variation of density with position (e.g. convection) was made in
Malkus (1996a). Studies for reproducibility of averages in flows with magnetic fields
(e.g. dynamos and plasmas), Malkus (1996b), have been explored only in limited
parameter ranges. Application of the approach taken in this paper to those adjacent
problems can lead to quantitative results, perhaps as here, close to the observed
averages.

6. Continuing exploration of the boundary flow
The apparent success of the Blasius idealization and of the estimates of boundary

eigenstructure from Drazin & Reid may be fortuitous. A computer study of the
diffusive regrowth of the boundary region with a variety of ‘wounds’ due to instabilities
and the point of recurring instability as they heal, can refine the quantitative estimates
made here. The average of the realized disruptions will provide a better picture of the
observed ‘laminar boundary layer’ (including apparent ‘fluctuations’ due to averages
over various phases of the diffusive recovery, as Howard (1964) explored in his thermal
convection study). Also needed is computer assessment of the spatial starting point
of the inertial aspect of the eigenflow which establishes the relation between kν and
Uτ (i.e. equation (22)). None of these suggestions involve programming to deal with
aperiodic flow, rather they will address further exploration of the proposed laminar
time-dependent stability constraint.

7. Conclusions
Two unusual ‘stability’ conditions are advanced to predict detailed quantitative

observations of the averages in turbulent channel flow. The first condition is that, for
reproducibility of the average flow at a given Reynolds number, the observed solutions
of the Navier–Stokes equation will be those solutions whose mean flows have the
maximum dissipation rate. The second condition results from the presumption that
recurring instability removes part of the boundary layer leading to the time-dependent
problem of a diffusively ‘healing’ viscous boundary. This requires that, for stability,
the mean flow has no inflections. A central condition determined in this stability
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problem is the smallest spatial scale of momentum transport. This determination fixes
the quantitative features of the theory, and can be refined with further computer
study. The qualitative aspects of this theory determine detailed features of the profile,
such as the logarithmic region and the velocity defect ‘law’, across the entire flow and
at all Reynolds numbers.

Establishing what turbulence does perhaps can help us to understand what
turbulence is. The view underlying this study is that reproducible observations of
the flow are averages of the least unstable of the many unstable solutions of the basic
equations. Yet more is learned each year about this disordered flow by those peering
in with computers from the borders of disorder described here.

Such novel results as this study contains finally depended upon the demanding
computations performed by Professor Leslie Smith to determine the extreme Fk .
Following that herculean effort, she applied our theoretical framework to the Couette
problem of flow between parallel plates in relative motion (Smith 1988, 1991). The
symmetry of that problem, of the modified Rayleigh condition (due to Fjørtoft) and
the boundary stability problem, all differ from the parallel flow problem treated here.
It should be of value to test the generalizability of the quantitative work in this paper
in that allied problem.

Suggestions for improvement in this presentation by the referees and by senior
participants in the GFD 2002 summer program on ‘upper bounds’ were much
appreciated.
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